The sequence (
E
n
\displaystyle {E}_{{n}}
E
n
) is generated using a recursion rule similar to the Fibonacci, but it contains more terms
E
n
+
1
=
E
n
+
E
n
−
1
+
E
n
−
2
\displaystyle {E}_{{{n}+{1}}}={E}_{{n}}+{E}_{{{n}-{1}}}+{E}_{{{n}-{2}}}
E
n
+
1
=
E
n
+
E
n
−
1
+
E
n
−
2
.
What are the next five terms of this sequence if we have the seeds
E
0
=
1
\displaystyle {E}_{{0}}={1}
E
0
=
1
,
E
1
=
1
\displaystyle {E}_{{1}}={1}
E
1
=
1
, and
E
2
=
4
\displaystyle {E}_{{2}}={4}
E
2
=
4
.
E
3
\displaystyle {E}_{{3}}
E
3
=
E
4
\displaystyle {E}_{{4}}
E
4
=
E
5
\displaystyle {E}_{{5}}
E
5
=
E
6
\displaystyle {E}_{{6}}
E
6
=
E
7
\displaystyle {E}_{{7}}
E
7
=
Submit
Try a similar question
License
[more..]