Let S\displaystyle {S} be the universal set, where:
S={1,2,3,,23,24,25}\displaystyle {S}={\left\lbrace{1},{2},{3},\ldots,{23},{24},{25}\right\rbrace}
Let sets A\displaystyle {A} and B\displaystyle {B} be subsets of S\displaystyle {S}, where:

Set A={1,8,11,12,20,21}\displaystyle {A}={\left\lbrace{1},{8},{11},{12},{20},{21}\right\rbrace}

Set B={1,2,8,9,12,13,19,22,24}\displaystyle {B}={\left\lbrace{1},{2},{8},{9},{12},{13},{19},{22},{24}\right\rbrace}

Set C={6,9,12,17,23,24,25}\displaystyle {C}={\left\lbrace{6},{9},{12},{17},{23},{24},{25}\right\rbrace}

Find the number of elements in the set (AC)Bc\displaystyle {\left({A}\cap{C}\right)}\cap{B}^{{c}}
n[(AC)Bc]\displaystyle {n}{\left[{\left({A}\cap{C}\right)}\cap{B}^{{c}}\right]} =

You may want to draw a Venn Diagram to help answer this question.