Let S\displaystyle {S} be the universal set, where:
S={1,2,3,,23,24,25}\displaystyle {S}={\left\lbrace{1},{2},{3},\ldots,{23},{24},{25}\right\rbrace}
Let sets A\displaystyle {A} and B\displaystyle {B} be subsets of S\displaystyle {S}, where:

Set A={1,1,3,11,15,17,18,21,23}\displaystyle {A}={\left\lbrace{1},{1},{3},{11},{15},{17},{18},{21},{23}\right\rbrace}

Set B={1,4,6,8,11,12,14,15,17,20,23,25}\displaystyle {B}={\left\lbrace{1},{4},{6},{8},{11},{12},{14},{15},{17},{20},{23},{25}\right\rbrace}

Set C={2,9,10,14,21,23,25}\displaystyle {C}={\left\lbrace{2},{9},{10},{14},{21},{23},{25}\right\rbrace}

Find the number of elements in the set (AC)Bc\displaystyle {\left({A}\cap{C}\right)}\cap{B}^{{c}}
n[(AC)Bc]\displaystyle {n}{\left[{\left({A}\cap{C}\right)}\cap{B}^{{c}}\right]} =

You may want to draw a Venn Diagram to help answer this question.