Recall that "Cardano's Formula" gave solutions to the equation x3+mx=n\displaystyle {x}^{{3}}+{m}{x}={n} as:

x=n2+R3+n2R3\displaystyle {x}={\sqrt[{{3}}]{{\frac{{n}}{{2}}+\sqrt{{{R}}}}}}+{\sqrt[{{3}}]{{\frac{{n}}{{2}}-\sqrt{{{R}}}}}}

where R=n24+m327\displaystyle {R}=\frac{{n}^{{2}}}{{4}}+\frac{{m}^{{3}}}{{27}}

For the cubic equation, x3+4x=3\displaystyle {x}^{{3}}+{4}{x}={3}, find the value of R.\displaystyle {R}.

Answer: R=\displaystyle {R}=
Round your answer to two decimal places.