Consider the following normal distribution graph:
30
36
42
48
54
60
66
72
78
84
Choose the equation that most appropriately fits the graph. Make your choice based on the graph and the equations themselves, not by literally graphing all the choices.
1
18
2
π
⋅
e
−
1
2
(
x
−
55
18
)
2
\displaystyle \frac{{1}}{{{18}\sqrt{{{2}\pi}}}}\cdot{e}^{{-\frac{{1}}{{2}}{\left(\frac{{{x}-{55}}}{{18}}\right)}^{{2}}}}
18
2
π
1
⋅
e
−
2
1
(
18
x
−
55
)
2
1
6
(
2
π
)
⋅
e
−
1
2
(
x
−
55
6
)
2
\displaystyle \frac{{1}}{{{6}{\left({2}\sqrt{{\pi}}\right)}}}\cdot{e}^{{-\frac{{1}}{{2}}{\left(\frac{{{x}-{55}}}{{6}}\right)}^{{2}}}}
6
(
2
π
)
1
⋅
e
−
2
1
(
6
x
−
55
)
2
1
6
2
π
⋅
e
−
1
2
(
x
−
55
6
)
2
\displaystyle \frac{{1}}{{{6}\sqrt{{{2}\pi}}}}\cdot{e}^{{-\frac{{1}}{{2}}{\left(\frac{{{x}-{55}}}{{6}}\right)}^{{2}}}}
6
2
π
1
⋅
e
−
2
1
(
6
x
−
55
)
2
1
6
2
π
⋅
e
−
1
2
(
x
−
50
6
)
2
\displaystyle \frac{{1}}{{{6}\sqrt{{{2}\pi}}}}\cdot{e}^{{-\frac{{1}}{{2}}{\left(\frac{{{x}-{50}}}{{6}}\right)}^{{2}}}}
6
2
π
1
⋅
e
−
2
1
(
6
x
−
50
)
2
1
6
2
π
⋅
e
−
1
2
(
x
−
60
6
)
2
\displaystyle \frac{{1}}{{{6}\sqrt{{{2}\pi}}}}\cdot{e}^{{-\frac{{1}}{{2}}{\left(\frac{{{x}-{60}}}{{6}}\right)}^{{2}}}}
6
2
π
1
⋅
e
−
2
1
(
6
x
−
60
)
2
Submit
Try a similar question
License
[more..]