To verify the identity: tan2θ+1=sec2θ\displaystyle {{\tan}^{{2}}\theta}+{1}={{\sec}^{{2}}\theta} ,
determine the value of tan2θsec2θ\displaystyle {{\tan}^{{2}}\theta}-{{\sec}^{{2}}\theta} for θ\displaystyle \theta = π4\displaystyle \frac{\pi}{{4}} .