To verify the identity:
tan
2
θ
+
1
=
sec
2
θ
\displaystyle {{\tan}^{{2}}\theta}+{1}={{\sec}^{{2}}\theta}
tan
2
θ
+
1
=
sec
2
θ
,
determine the value of
tan
2
θ
−
sec
2
θ
\displaystyle {{\tan}^{{2}}\theta}-{{\sec}^{{2}}\theta}
tan
2
θ
−
sec
2
θ
for
θ
\displaystyle \theta
θ
=
π
4
\displaystyle \frac{\pi}{{4}}
4
π
.
Question Help:
Worked Example 1
Submit
Try a similar question
License
[more..]
Enter your answer as an integer or decimal number. Examples: 3, -4, 5.5172
Enter DNE for Does Not Exist, oo for Infinity