Find all solutions of the equation cosx(2sinx+1)=0.\displaystyle {\cos{{x}}}{\left({2}{\sin{{x}}}+{1}\right)}={0}. on the interval [0,2π)\displaystyle {\left[{0},{2}\pi\right)}.
The answers are A\displaystyle {A}, B\displaystyle {B}, C\displaystyle {C} and D\displaystyle {D} where 0<A<B<C<D\displaystyle {0}<{A}<{B}<{C}<{D} Us pi for π\displaystyle \pi.

A=\displaystyle {A}=  
B=\displaystyle {B}=  
C=\displaystyle {C}=  
D=\displaystyle {D}=