Use the Laws of logarithms to rewrite the expression
log(x2y10z2)\displaystyle {\log{{\left({\frac{{{x}^{{{2}}}{y}^{{{10}}}}}{{{z}^{{{2}}}}}}\right)}}}
in a form with no logarithm of a product, quotient or power.
After rewriting we have
log(x2y10z2)=Alog(x)+Blog(y)+Clog(z)\displaystyle {\log{{\left({\frac{{{x}^{{{2}}}{y}^{{{10}}}}}{{{z}^{{{2}}}}}}\right)}}}={A}{\log{{\left({x}\right)}}}+{B}{\log{{\left({y}\right)}}}+{C}{\log{{\left({z}\right)}}}

with
A=\displaystyle {A}=  
B=\displaystyle {B}=  
and
C=\displaystyle {C}=