Find the exact length of the helix
r
⃗
(
t
)
=
⟨
10
cos
(
2
t
5
)
,
10
sin
(
2
t
5
)
,
3
t
⟩
\displaystyle \vec{{r}}{\left({t}\right)}={\left\langle\ {10}{\cos{{\left(\frac{{{2}{t}}}{{5}}\right)}}},\ {10}{\sin{{\left(\frac{{{2}{t}}}{{5}}\right)}}},\ {3}{t}\ \right\rangle}
r
(
t
)
=
⟨
10
cos
(
5
2
t
)
,
10
sin
(
5
2
t
)
,
3
t
⟩
for
−
8
≤
t
≤
6
\displaystyle -{8}\le{t}\le{6}
−
8
≤
t
≤
6
.
Preview
Question 6
Submit
Try a similar question
License
[more..]
\displaystyle
Enter your answer as a number (like 5, -3, 2.2172) or as a calculation (like 5/3, 2^3, 5+4)
Enter DNE for Does Not Exist, oo for Infinity