Evaluate sin(ln(x5))xdx\displaystyle \int\frac{{\sin{{\left({\ln{{\left({x}^{{5}}\right)}}}\right)}}}}{{x}}{\left.{d}{x}\right.} for x > 0.
First make the substitution u =  
Then sin(ln(x5))xdx\displaystyle \int\frac{{\sin{{\left({\ln{{\left({x}^{{5}}\right)}}}\right)}}}}{{x}}{\left.{d}{x}\right.} = \displaystyle \int   du
Now integrate with respect to u to get   + C
So sin(ln(x5))xdx\displaystyle \int\frac{{\sin{{\left({\ln{{\left({x}^{{5}}\right)}}}\right)}}}}{{x}}{\left.{d}{x}\right.} =   + C