Evaluate 1arcsin(7x)149x2dx\displaystyle \int\frac{{1}}{{{\arcsin{{\left({7}{x}\right)}}}\sqrt{{{1}-{49}{x}^{{2}}}}}}{\left.{d}{x}\right.} for 0<x<17\displaystyle {0}<{x}<\frac{{1}}{{7}}.
First make the substitution u =  
Then 1arcsin(7x)149x2dx=\displaystyle \int\frac{{1}}{{{\arcsin{{\left({7}{x}\right)}}}\sqrt{{{1}-{49}{x}^{{2}}}}}}{\left.{d}{x}\right.}=\int   du
Now integrate with respect to u to get   + C
So 1arcsin(7x)149x2dx\displaystyle \int\frac{{1}}{{{\arcsin{{\left({7}{x}\right)}}}\sqrt{{{1}-{49}{x}^{{2}}}}}}{\left.{d}{x}\right.} =   + C