Evaluate 1arcsin(2x)14x2dx\displaystyle \int\frac{{1}}{{{\arcsin{{\left({2}{x}\right)}}}\sqrt{{{1}-{4}{x}^{{2}}}}}}{\left.{d}{x}\right.} for 0<x<12\displaystyle {0}<{x}<\frac{{1}}{{2}}.
First make the substitution u =  
Then 1arcsin(2x)14x2dx=\displaystyle \int\frac{{1}}{{{\arcsin{{\left({2}{x}\right)}}}\sqrt{{{1}-{4}{x}^{{2}}}}}}{\left.{d}{x}\right.}=\int   du
Now integrate with respect to u to get   + C
So 1arcsin(2x)14x2dx\displaystyle \int\frac{{1}}{{{\arcsin{{\left({2}{x}\right)}}}\sqrt{{{1}-{4}{x}^{{2}}}}}}{\left.{d}{x}\right.} =   + C