Write the the function f(x)=3x224x49\displaystyle {f{{\left({x}\right)}}}=-{3}{x}^{{2}}-{24}{x}-{49} in the form f(x)=a(xp)2+q\displaystyle {f{{\left({x}\right)}}}={a}{\left({x}-{p}\right)}^{{2}}+{q}

Now a=a\displaystyle {a}={a} so a=\displaystyle {a}=

And p=b2a\displaystyle {p}=-\frac{{b}}{{{2}{a}}} so p=\displaystyle {p}=

And since q\displaystyle {q} is the last parameter to solve we may solve it by substituting any point on the curve: (0;c)\displaystyle {\left({0};{c}\right)} is the y\displaystyle {y}-intercept of the curve so:

=\displaystyle =(\displaystyle {(} - )2+q\displaystyle {)}^{{2}}+{q}

q=\displaystyle {q}=

Therefore:

f(x)=\displaystyle {f{{\left({x}\right)}}}=  

Videos:

converting to a(x-p)^2+q