Evaluate dx7x2+1x+7\displaystyle \int\frac{{\left.{d}{x}\right.}}{{{7}{x}^{{2}}+{1}{x}+{7}}}.
7x2+1x+7\displaystyle {7}{x}^{{2}}+{1}{x}+{7} is an irreducible quadratic since the value of b24ac\displaystyle {b}^{{2}}-{4}{a}{c} =   is negative.
Transform 7x2+1x+7\displaystyle {7}{x}^{{2}}+{1}{x}+{7} to d(e(x+f)2+1)\displaystyle {d}{\left({e}{\left({x}+{f}\right)}^{{2}}+{1}\right)} for constants d, e and f by completing the square and doing algebra.
d =       e =       f =  
Now make the substitution u=e(x+f)\displaystyle {u}=\sqrt{{{e}}}{\left({x}+{f}\right)} to obtain an integral of the form gduu2+1\displaystyle {g}\int\frac{{{d}{u}}}{{{u}^{{2}}+{1}}} for a constant g.
Finally integrate.
dx7x2+1x+7\displaystyle \int\frac{{\left.{d}{x}\right.}}{{{7}{x}^{{2}}+{1}{x}+{7}}} =