Determine whether the integral 2x2+3x4+9x2+29dx\displaystyle {\int_{{2}}^{\infty}}\frac{{{x}^{{2}}+{3}}}{{{x}^{{4}}+{9}{x}^{{2}}+{29}}}{\left.{d}{x}\right.} is divergent or convergent.
Use a comparison of 2x2+3x4+9x2+29dx\displaystyle {\int_{{2}}^{\infty}}\frac{{{x}^{{2}}+{3}}}{{{x}^{{4}}+{9}{x}^{{2}}+{29}}}{\left.{d}{x}\right.} to dxxp\displaystyle \int\frac{{\left.{d}{x}\right.}}{{x}^{{p}}} for a positive integer p.
Smallest p =
2dxxp\displaystyle {\int_{{2}}^{\infty}}\frac{{\left.{d}{x}\right.}}{{x}^{{p}}} 2x2+3x4+9x2+29dx\displaystyle {\int_{{2}}^{\infty}}\frac{{{x}^{{2}}+{3}}}{{{x}^{{4}}+{9}{x}^{{2}}+{29}}}{\left.{d}{x}\right.}
2dxxp\displaystyle {\int_{{2}}^{\infty}}\frac{{\left.{d}{x}\right.}}{{x}^{{p}}} .
So 2x2+3x4+9x2+29dx\displaystyle {\int_{{2}}^{\infty}}\frac{{{x}^{{2}}+{3}}}{{{x}^{{4}}+{9}{x}^{{2}}+{29}}}{\left.{d}{x}\right.}