Determine whether the integral
∫
2
∞
x
2
+
3
x
4
+
9
x
2
+
29
d
x
\displaystyle {\int_{{2}}^{\infty}}\frac{{{x}^{{2}}+{3}}}{{{x}^{{4}}+{9}{x}^{{2}}+{29}}}{\left.{d}{x}\right.}
∫
2
∞
x
4
+
9
x
2
+
29
x
2
+
3
d
x
is divergent or convergent.
Use a comparison of
∫
2
∞
x
2
+
3
x
4
+
9
x
2
+
29
d
x
\displaystyle {\int_{{2}}^{\infty}}\frac{{{x}^{{2}}+{3}}}{{{x}^{{4}}+{9}{x}^{{2}}+{29}}}{\left.{d}{x}\right.}
∫
2
∞
x
4
+
9
x
2
+
29
x
2
+
3
d
x
to
∫
d
x
x
p
\displaystyle \int\frac{{\left.{d}{x}\right.}}{{x}^{{p}}}
∫
x
p
d
x
for a positive integer p.
Smallest p =
∫
2
∞
d
x
x
p
\displaystyle {\int_{{2}}^{\infty}}\frac{{\left.{d}{x}\right.}}{{x}^{{p}}}
∫
2
∞
x
p
d
x
<
>
∫
2
∞
x
2
+
3
x
4
+
9
x
2
+
29
d
x
\displaystyle {\int_{{2}}^{\infty}}\frac{{{x}^{{2}}+{3}}}{{{x}^{{4}}+{9}{x}^{{2}}+{29}}}{\left.{d}{x}\right.}
∫
2
∞
x
4
+
9
x
2
+
29
x
2
+
3
d
x
∫
2
∞
d
x
x
p
\displaystyle {\int_{{2}}^{\infty}}\frac{{\left.{d}{x}\right.}}{{x}^{{p}}}
∫
2
∞
x
p
d
x
converges
diverges
.
So
∫
2
∞
x
2
+
3
x
4
+
9
x
2
+
29
d
x
\displaystyle {\int_{{2}}^{\infty}}\frac{{{x}^{{2}}+{3}}}{{{x}^{{4}}+{9}{x}^{{2}}+{29}}}{\left.{d}{x}\right.}
∫
2
∞
x
4
+
9
x
2
+
29
x
2
+
3
d
x
converges
diverges
Submit
Try a similar question
License
[more..]
Enter your answer as an integer or decimal number. Examples: 3, -4, 5.5172
Enter DNE for Does Not Exist, oo for Infinity