By the alternating series test, the series k=12(1)k+1k(k+4)\displaystyle {\sum_{{{k}={1}}}^{\infty}}\frac{{{2}{\left(-{1}\right)}^{{{k}+{1}}}}}{{{k}{\left({k}+{4}\right)}}} converges. Find its sum.
First find the partial fraction decomposition of 2k(k+4)\displaystyle \frac{{2}}{{{k}{\left({k}+{4}\right)}}}.
2k(k+4)=\displaystyle \frac{{2}}{{{k}{\left({k}+{4}\right)}}}=  
Then find the limit of the partial sums.
k=12(1)k+1k(k+4)=\displaystyle {\sum_{{{k}={1}}}^{\infty}}\frac{{{2}{\left(-{1}\right)}^{{{k}+{1}}}}}{{{k}{\left({k}+{4}\right)}}}=  
Enter your answer for the sum as a reduced fraction.