For the function f( x ) = 9(1+r)4\displaystyle {9}{\left({1}+{r}\right)}^{{4}}, find the value of the difference quotient f(x+h)f(x)h\displaystyle \frac{{{f{{\left({x}+{h}\right)}}}-{f{{\left({x}\right)}}}}}{{h}} for x = 0.19 and h = 0.1, 0.01 and 0.001
f(0.29)f(0.19).1\displaystyle \frac{{{f{{\left({0.29}\right)}}}-{f{{\left({0.19}\right)}}}}}{{.1}} =  
f(0.2)f(0.19).01\displaystyle \frac{{{f{{\left({0.2}\right)}}}-{f{{\left({0.19}\right)}}}}}{{.01}} =  
f(0.191)f(0.19).001\displaystyle \frac{{{f{{\left({0.191}\right)}}}-{f{{\left({0.19}\right)}}}}}{{.001}} =