For the function f( x ) =
9 ( 1 + r ) 4 \displaystyle {9}{\left({1}+{r}\right)}^{{4}} 9 ( 1 + r ) 4 , find the value of the difference quotient
f ( x + h ) − f ( x ) h \displaystyle \frac{{{f{{\left({x}+{h}\right)}}}-{f{{\left({x}\right)}}}}}{{h}} h f ( x + h ) − f ( x ) for x = 0.19 and h = 0.1, 0.01 and 0.001
f ( 0.29 ) − f ( 0.19 ) . 1 \displaystyle \frac{{{f{{\left({0.29}\right)}}}-{f{{\left({0.19}\right)}}}}}{{.1}} .1 f ( 0.29 ) − f ( 0.19 ) =
Preview Question 6 Part 1 of 3
f ( 0.2 ) − f ( 0.19 ) . 01 \displaystyle \frac{{{f{{\left({0.2}\right)}}}-{f{{\left({0.19}\right)}}}}}{{.01}} .01 f ( 0.2 ) − f ( 0.19 ) =
Preview Question 6 Part 2 of 3
f ( 0.191 ) − f ( 0.19 ) . 001 \displaystyle \frac{{{f{{\left({0.191}\right)}}}-{f{{\left({0.19}\right)}}}}}{{.001}} .001 f ( 0.191 ) − f ( 0.19 ) =
Preview Question 6 Part 3 of 3
Submit Try a similar question
[more..]
Enter your answer as a number (like 5, -3, 2.2172) or as a calculation (like 5/3, 2^3, 5+4) Enter DNE for Does Not Exist, oo for Infinity
Enter your answer as a number (like 5, -3, 2.2172) or as a calculation (like 5/3, 2^3, 5+4) Enter DNE for Does Not Exist, oo for Infinity
Enter your answer as a number (like 5, -3, 2.2172) or as a calculation (like 5/3, 2^3, 5+4) Enter DNE for Does Not Exist, oo for Infinity