For the function f( x ) = 4(1+r)2\displaystyle {4}{\left({1}+{r}\right)}^{{2}}, find the value of the difference quotient f(x+h)f(x)h\displaystyle \frac{{{f{{\left({x}+{h}\right)}}}-{f{{\left({x}\right)}}}}}{{h}} for x = 0.4 and h = 0.1, 0.01 and 0.001
f(0.5)f(0.4).1\displaystyle \frac{{{f{{\left({0.5}\right)}}}-{f{{\left({0.4}\right)}}}}}{{.1}} =  
f(0.41)f(0.4).01\displaystyle \frac{{{f{{\left({0.41}\right)}}}-{f{{\left({0.4}\right)}}}}}{{.01}} =  
f(0.401)f(0.4).001\displaystyle \frac{{{f{{\left({0.401}\right)}}}-{f{{\left({0.4}\right)}}}}}{{.001}} =