Let f(x)={6x4ifx62x+bifx>6\displaystyle {f{{\left({x}\right)}}}={\left\lbrace\begin{array}{ccc} {6}{x}-{4}&\text{if}&{x}\leq{6}\\-{2}{x}+{b}&\text{if}&{x}>{6}\end{array}\right.}

If f(x)\displaystyle {f{{\left({x}\right)}}} is a function which is continuous everywhere, then we must have
b=\displaystyle {b}=