Let f(x)={mx5ifx<3x2+6x2ifx3\displaystyle {f{{\left({x}\right)}}}={\left\lbrace\begin{array}{ccc} {m}{x}-{5}&\text{if}&{x}<-{3}\\{x}^{{2}}+{6}{x}-{2}&\text{if}&{x}\geq-{3}\end{array}\right.}

If f(x)\displaystyle {f{{\left({x}\right)}}} is a function which is continuous everywhere, then we must have
m=\displaystyle {m}=