If f(x)=2x26x+3\displaystyle {f{{\left({x}\right)}}}={2}{x}^{{2}}-{6}{x}+{3}, find f(0)\displaystyle {f}'{\left({0}\right)}.  

Use this to find the equation of the tangent line to the parabola y=2x26x+3\displaystyle {y}={2}{x}^{{2}}-{6}{x}+{3} at the point (0,3)\displaystyle {\left({0},{3}\right)}. The equation of this tangent line can be written in the form y=mx+b\displaystyle {y}={m}{x}+{b}
where m\displaystyle {m} is:  
and where b\displaystyle {b} is: