Let F(x)=f(f(x))\displaystyle {F}{\left({x}\right)}={f{{\left({f{{\left({x}\right)}}}\right)}}} and G(x)=(F(x))2\displaystyle {G}{\left({x}\right)}={\left({F}{\left({x}\right)}\right)}^{{{2}}} .
You also know that f(8)=15, f(15)=3, f(15)=4, f(8)=14\displaystyle {f{{\left({8}\right)}}}={15},\ {f{{\left({15}\right)}}}={3},\ {f}'{\left({15}\right)}={4},\ {f}'{\left({8}\right)}={14}

Find F(8)=\displaystyle {F}'{\left({8}\right)}=   and G(8)=\displaystyle {G}'{\left({8}\right)}=