Use implicit differentiation to find
d
y
d
x
\displaystyle \frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}
d
x
d
y
given the equation
cos
(
x
y
)
=
y
4
\displaystyle {\cos{{\left({x}{y}\right)}}}={y}^{{4}}
cos
(
x
y
)
=
y
4
.
d
y
d
x
=
\displaystyle \frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}=
d
x
d
y
=
Preview
Question 6
Question Help:
Video
Video
Submit
Try a similar question
License
[more..]
\displaystyle
Enter your answer as an expression. Example: 3x^2+1, x/5, (a+b)/c
Be sure your variables match those in the question