Calculate n\displaystyle {n} if b=1n(4b1)=666\displaystyle {\sum_{{{b}={1}}}^{{n}}}{\left({4}{b}-{1}\right)}={666} Using the Sigma Laws we get

b=1n(b)+\displaystyle {\sum_{{{b}={1}}}^{{n}}}{\left({b}\right)}+ =666\displaystyle ={666}

But

 b=1n(b)=\displaystyle {\sum_{{{b}={1}}}^{{n}}}{\left({b}\right)}=   (in terms of n\displaystyle {n})

So we have

(in the form an2+bn+c=0\displaystyle {a}{n}^{{2}}+{b}{n}+{c}={0})  

From which we get

 n=\displaystyle {n}= (not applicable) or n=\displaystyle {n}=