Consider the following geometric series:

(x4)\displaystyle {\left(-{x}-{4}\right)} +\displaystyle + (4x2+15x4)\displaystyle {\left({4}{x}^{{2}}+{15}{x}-{4}\right)} +\displaystyle + (16x356x2+31x4)\displaystyle {\left(-{16}{x}^{{3}}-{56}{x}^{{2}}+{31}{x}-{4}\right)}\ldots


a) Determine the common ratio of the sequence in terms of x\displaystyle {x} .

 r=\displaystyle {r}=   

 =\displaystyle =   

(2)


b) For which value of x\displaystyle {x} will the series converge?

Convergence Condition in terms of r\displaystyle {r} :

 

  (substitute r\displaystyle {r} )

 x\displaystyle {x}\in   

(3)


c) Calculate S\displaystyle {S}_{{\infty}} if x=15\displaystyle {x}=\frac{{1}}{{5}} 

Formula

S=\displaystyle {S}_{\infty}=   

Substitution

S=\displaystyle {S}_{\infty}=   

Solve

S=\displaystyle {S}_{\infty}=   

(3)


[8]