Enter each answer as a whole number or a fraction, or DNE for Does Not Exist or undefined.

limx4+\displaystyle \lim_{{{x}\to{4}^{+}}} f(x)2f(x+4)=\displaystyle \frac{{{f{{\left({x}\right)}}}-{2}}}{{f{{\left({x}+{4}\right)}}}}=

limx1\displaystyle \lim_{{{x}\to{1}^{{-}}}} f(f(x)+2)=\displaystyle {f{{\left({f{{\left({x}\right)}}}+{2}\right)}}}=

limh0\displaystyle \lim_{{{h}\to{0}}} f(6+h)f(6)h=\displaystyle \frac{{{f{{\left({6}+{h}\right)}}}-{f{{\left({6}\right)}}}}}{{h}}=