Let
y
=
(
x
2
+
5
)
⋅
sin
(
x
)
\displaystyle {y}={\left({x}^{{2}}+{5}\right)}\cdot{\sin{{\left({x}\right)}}}
y
=
(
x
2
+
5
)
⋅
sin
(
x
)
Find
d
y
d
x
\displaystyle \frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}
d
x
d
y
d
y
d
x
=
\displaystyle \frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}=
d
x
d
y
=
Preview
Question 6
Type
sin(x)
for
sin
(
x
)
\displaystyle {\sin{{\left({x}\right)}}}
sin
(
x
)
,
cos(x)
for
cos
(
x
)
\displaystyle {\cos{{\left({x}\right)}}}
cos
(
x
)
, and so on.
Submit
Try a similar question
License
[more..]
\displaystyle