y
=
(
5
x
+
cot
(
x
)
)
6
\displaystyle {y}={\left({5}{x}+{\cot{{\left({x}\right)}}}\right)}^{{6}}
y
=
(
5
x
+
cot
(
x
)
)
6
Find
d
y
d
x
\displaystyle \frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}
d
x
d
y
d
y
d
x
=
\displaystyle \frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}=
d
x
d
y
=
Preview
Question 6
Type
sin(x)
for
sin
(
x
)
\displaystyle {\sin{{\left({x}\right)}}}
sin
(
x
)
,
cos(x)
for
cos
(
x
)
\displaystyle {\cos{{\left({x}\right)}}}
cos
(
x
)
, and so on.
Use
x^2
to square x,
x^3
to cube x, and so on.
Use
( sin(x) )^2
to square sin(x).
Do NOT simplify your answer.
Question Help:
Video
Submit
Try a similar question
License
[more..]
\displaystyle
Enter your answer as an expression. Example: 3x^2+1, x/5, (a+b)/c
Be sure your variables match those in the question