Let x(t)=t34t2+t\displaystyle {x}{\left({t}\right)}={t}^{{3}}-{4}\cdot{t}^{{2}}+{t}

andy(t)=t26t+3\displaystyle {\quad\text{and}\quad}{y}{\left({t}\right)}={t}^{{2}}-{6}\cdot{t}+{3}

Box 1-4 answers should be integers.

Box 5 answer should be an integer or fraction.

Box 6 answer should be a decimal (2 places).

At t=0\displaystyle {t}={0}

x(t)=\displaystyle {x}{\left({t}\right)}=

y(t)=\displaystyle {y}{\left({t}\right)}=

dxdt=\displaystyle \frac{{{\left.{d}{x}\right.}}}{{{\left.{d}{t}\right.}}}=

dydt=\displaystyle \frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{t}\right.}}}=

dydx\displaystyle \frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}} = tangent slope =

speed =\displaystyle \text{speed =}