Let x(t)=t34t2+1\displaystyle {x}{\left({t}\right)}={t}^{{3}}-{4}\cdot{t}^{{2}}+{1}

andy(t)=t35t2+2t+8\displaystyle {\quad\text{and}\quad}{y}{\left({t}\right)}={t}^{{3}}-{5}\cdot{t}^{{2}}+{2}\cdot{t}+{8}

Box 1-4 answers should be integers.

Box 5 answer should be an integer or fraction.

Box 6 answer should be a decimal (2 places).

At t=2\displaystyle {t}={2}

x(t)=\displaystyle {x}{\left({t}\right)}=

y(t)=\displaystyle {y}{\left({t}\right)}=

dxdt=\displaystyle \frac{{{\left.{d}{x}\right.}}}{{{\left.{d}{t}\right.}}}=

dydt=\displaystyle \frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{t}\right.}}}=

dydx\displaystyle \frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}} = tangent slope =

speed =\displaystyle \text{speed =}