Let
x
(
t
)
=
t
3
−
4
⋅
t
2
+
1
\displaystyle {x}{\left({t}\right)}={t}^{{3}}-{4}\cdot{t}^{{2}}+{1}
x
(
t
)
=
t
3
−
4
⋅
t
2
+
1
and
y
(
t
)
=
t
3
−
5
⋅
t
2
+
2
⋅
t
+
8
\displaystyle {\quad\text{and}\quad}{y}{\left({t}\right)}={t}^{{3}}-{5}\cdot{t}^{{2}}+{2}\cdot{t}+{8}
and
y
(
t
)
=
t
3
−
5
⋅
t
2
+
2
⋅
t
+
8
Box 1-4 answers should be integers.
Box 5 answer should be an integer or fraction.
Box 6 answer should be a decimal (2 places).
At
t
=
2
\displaystyle {t}={2}
t
=
2
x
(
t
)
=
\displaystyle {x}{\left({t}\right)}=
x
(
t
)
=
y
(
t
)
=
\displaystyle {y}{\left({t}\right)}=
y
(
t
)
=
d
x
d
t
=
\displaystyle \frac{{{\left.{d}{x}\right.}}}{{{\left.{d}{t}\right.}}}=
d
t
d
x
=
d
y
d
t
=
\displaystyle \frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{t}\right.}}}=
d
t
d
y
=
d
y
d
x
\displaystyle \frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}
d
x
d
y
= tangent slope =
speed =
\displaystyle \text{speed =}
speed =
Question Help:
Video
Submit
Try a similar question
License
[more..]