Let x(t)=5cos(t)\displaystyle {x}{\left({t}\right)}={5}\cdot{\cos{{\left({t}\right)}}}

andy(t)=3sin(t)\displaystyle {\quad\text{and}\quad}{y}{\left({t}\right)}={3}\cdot{\sin{{\left({t}\right)}}}

All answers should be decimals

rounded to 2 decimal places.

At t=1\displaystyle {t}={1}

x(t)=\displaystyle {x}{\left({t}\right)}=

y(t)=\displaystyle {y}{\left({t}\right)}=

dxdt=\displaystyle \frac{{{\left.{d}{x}\right.}}}{{{\left.{d}{t}\right.}}}=

dydt=\displaystyle \frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{t}\right.}}}=

dydx\displaystyle \frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}} = tangent slope =

speed =\displaystyle \text{speed =}