Let
x
(
t
)
=
5
⋅
cos
(
t
)
\displaystyle {x}{\left({t}\right)}={5}\cdot{\cos{{\left({t}\right)}}}
x
(
t
)
=
5
⋅
cos
(
t
)
and
y
(
t
)
=
3
⋅
sin
(
t
)
\displaystyle {\quad\text{and}\quad}{y}{\left({t}\right)}={3}\cdot{\sin{{\left({t}\right)}}}
and
y
(
t
)
=
3
⋅
sin
(
t
)
All answers should be decimals
rounded to 2 decimal places.
At
t
=
1
\displaystyle {t}={1}
t
=
1
x
(
t
)
=
\displaystyle {x}{\left({t}\right)}=
x
(
t
)
=
y
(
t
)
=
\displaystyle {y}{\left({t}\right)}=
y
(
t
)
=
d
x
d
t
=
\displaystyle \frac{{{\left.{d}{x}\right.}}}{{{\left.{d}{t}\right.}}}=
d
t
d
x
=
d
y
d
t
=
\displaystyle \frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{t}\right.}}}=
d
t
d
y
=
d
y
d
x
\displaystyle \frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}
d
x
d
y
= tangent slope =
speed =
\displaystyle \text{speed =}
speed =
Question Help:
Video
Submit
Try a similar question
License
[more..]