y=(x2+6)x\displaystyle {y}={\left({x}^{{2}}+{6}\right)}^{{x}}

Use Logarithmic Differentiation to find dydx\displaystyle \frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}

dydx=\displaystyle \frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}=  

Type sin(x) for sin(x)\displaystyle {\sin{{\left({x}\right)}}} , cos(x) for cos(x)\displaystyle {\cos{{\left({x}\right)}}}, and so on.

Use x^2 to square x, x^3 to cube x, and so on.

Use ( sin(x) )^2 to square sin(x).

Use ln( ) for the natural logarithm.

Do NOT simplify your answer.