Make the substitution u = 8+5ex\displaystyle {8}+{5}\cdot{e}^{{x}}

and then rewrite the integral

in terms of u and du.

The original integral is \displaystyle \int 15ex(8+5ex)5\displaystyle {15}\cdot{e}^{{x}}\cdot{\left({8}+{5}\cdot{e}^{{x}}\right)}^{{5}} dx

The new integral (in terms of u and du) is

\displaystyle \int  



Type sin(x) for sin(x)\displaystyle {\sin{{\left({x}\right)}}} , cos(x) for cos(x)\displaystyle {\cos{{\left({x}\right)}}}, and so on.

Use x^2 for x2\displaystyle {x}^{{2}}, (x+2)^3 for (x+2)3\displaystyle {\left({x}+{2}\right)}^{{3}}, sqrt(x) for x\displaystyle \sqrt{{{x}}},

Use ( sin(x) )^2 to square sin(x).