Evaluate the indefinite integral.

A u-substitution may make the integral easier.



\displaystyle \int 7cos(x)(6+sin(x))3\displaystyle \frac{{{7}\cdot{\cos{{\left({x}\right)}}}}}{{\left({6}+{\sin{{\left({x}\right)}}}\right)}^{{3}}} dx =   +C



Type sin(x) for sin(x)\displaystyle {\sin{{\left({x}\right)}}} , cos(x) for cos(x)\displaystyle {\cos{{\left({x}\right)}}}, and so on.

Use x^2 for x2\displaystyle {x}^{{2}}, (x+2)^3 for (x+2)3\displaystyle {\left({x}+{2}\right)}^{{3}}, sqrt(x) for x\displaystyle \sqrt{{{x}}},

Use ( sin(x) )^2 to square sin(x).