Suppose that f(x)\displaystyle {f{{\left({x}\right)}}} and g(x)\displaystyle {g{{\left({x}\right)}}} are two functions and we know that:
f(3)=5\displaystyle {f{{\left(-{3}\right)}}}={5}
g(3)=5\displaystyle {g{{\left(-{3}\right)}}}={5}
f(3)=0\displaystyle {f}'{\left(-{3}\right)}={0}
g(3)=3\displaystyle {g}'{\left(-{3}\right)}={3}
Find the following: (fg)(3)=\displaystyle {\left({f}-{g}\right)}'{\left(-{3}\right)}=  
(gf)(3)=\displaystyle {\left({g}-{f}\right)}'{\left(-{3}\right)}=  
(fg)(3)=\displaystyle {\left({f}{g}\right)}'{\left(-{3}\right)}=  
(fg)(3)=\displaystyle {\left(\frac{{f}}{{g}}\right)}'{\left(-{3}\right)}=  
If k(x)=f(x)x2\displaystyle {k}{\left({x}\right)}=\frac{{{f{{\left({x}\right)}}}}}{{{x}^{{2}}}} then k(3)=\displaystyle {k}'{\left(-{3}\right)}=