Suppose that f(x)\displaystyle {f{{\left({x}\right)}}} and g(x)\displaystyle {g{{\left({x}\right)}}} are two functions and we know that:
f(1)=1\displaystyle {f{{\left({1}\right)}}}=-{1}
g(1)=5\displaystyle {g{{\left({1}\right)}}}={5}
f(1)=1\displaystyle {f}'{\left({1}\right)}=-{1}
g(1)=4\displaystyle {g}'{\left({1}\right)}={4}
Find the following: (fg)(1)=\displaystyle {\left({f}-{g}\right)}'{\left({1}\right)}=  
(gf)(1)=\displaystyle {\left({g}-{f}\right)}'{\left({1}\right)}=  
(fg)(1)=\displaystyle {\left({f}{g}\right)}'{\left({1}\right)}=  
(fg)(1)=\displaystyle {\left(\frac{{f}}{{g}}\right)}'{\left({1}\right)}=  
If k(x)=f(x)x2\displaystyle {k}{\left({x}\right)}=\frac{{{f{{\left({x}\right)}}}}}{{{x}^{{2}}}} then k(1)=\displaystyle {k}'{\left({1}\right)}=