Consider the function f(x)=6(x3)2/3\displaystyle {f{{\left({x}\right)}}}={6}{\left({x}-{3}\right)}^{{{2}/{3}}}. For this function there are two important intervals: (,A)\displaystyle {\left(-\infty,{A}\right)} and (A,)\displaystyle {\left({A},\infty\right)} where A\displaystyle {A} is a critical number.
A\displaystyle {A} is  

For each of the following intervals, tell whether f(x)\displaystyle {f{{\left({x}\right)}}} is increasing or decreasing.
(,A)\displaystyle {\left(-\infty,{A}\right)}:
(A,)\displaystyle {\left({A},\infty\right)}:

For each of the following intervals, tell whether f(x)\displaystyle {f{{\left({x}\right)}}} is concave up or concave down.
(,A)\displaystyle {\left(-\infty,{A}\right)}:
(A,)\displaystyle {\left({A},\infty\right)}: