The graph below is the function
f
(
x
)
\displaystyle {f{{\left({x}\right)}}}
f
(
x
)
1
2
3
4
5
-1
-2
-3
-4
-5
1
2
3
4
5
-1
-2
-3
-4
-5
Determine which one of the following explains why continuity is violated at
x
=
−
1
\displaystyle {x}=-{1}
x
=
−
1
.
f
(
a
)
\displaystyle {f{{\left({a}\right)}}}
f
(
a
)
is undefined.
lim
x
→
a
f
(
x
)
\displaystyle \lim_{{{x}\to{a}}}\ \ {f{{\left({x}\right)}}}
x
→
a
lim
f
(
x
)
and
f
(
a
)
\displaystyle {f{{\left({a}\right)}}}
f
(
a
)
exist but are not equal.
lim
x
→
a
f
(
x
)
\displaystyle \lim_{{{x}\to{a}}}\ \ {f{{\left({x}\right)}}}
x
→
a
lim
f
(
x
)
does not exist.
Question Help:
Video
Submit
Try a similar question
License
[more..]