Let u(x)=x9\displaystyle {u}{\left({x}\right)}={x}^{{9}}, v(x)=cosx\displaystyle {v}{\left({x}\right)}={\cos{{x}}} and f(x)=u(x)v(x)\displaystyle {f{{\left({x}\right)}}}={u}{\left({x}\right)}{v}{\left({x}\right)}.

u(x)\displaystyle {u}'{\left({x}\right)} =  

v(x)=sin(x)\displaystyle {v}'{\left({x}\right)}=-{\sin{{\left({x}\right)}}}.

f(x)=u(x)v(x)\displaystyle {f{{\left({x}\right)}}}={u}{\left({x}\right)}{v}{\left({x}\right)} =  

f(x)=u(x)v(x)+u(x)v(x)\displaystyle {f}'{\left({x}\right)}={u}'{\left({x}\right)}{v}{\left({x}\right)}+{u}{\left({x}\right)}{v}'{\left({x}\right)} =