The Test for Divergence for infinite series (also called the “n\displaystyle {n}-th term test for divergence of a series”) says that:

limnan0    n=1an\displaystyle \lim_{{{n}\to\infty}}{a}_{{n}}\ne{0}\ \ \Rightarrow\ \ {\sum_{{{n}={1}}}^{{\infty}}}{a}_{{n}} diverges

Notice that this test tells us nothing about n=1an\displaystyle {\sum_{{{n}={1}}}^{{\infty}}}{a}_{{n}} if limnan=0\displaystyle \lim_{{{n}\to\infty}}{a}_{{n}}={0}; in that situation the series might converge or it might diverge.

Consider the series n=13n44n5+4\displaystyle {\sum_{{{n}={1}}}^{\infty}}\frac{{{3}{n}^{{4}}}}{{{4}{n}^{{5}}+{4}}}

The Test for Divergence tells us that this series: