Let x(t)=t34t2+t\displaystyle {x}{\left({t}\right)}={t}^{{3}}-{4}{t}^{{2}}+{t}

and y(t)=t26t+3\displaystyle {y}{\left({t}\right)}={t}^{{2}}-{6}{t}+{3}

At t=0\displaystyle {t}={0},

x(0)=\displaystyle {x}{\left({0}\right)}=
y(0)=\displaystyle {y}{\left({0}\right)}=

dxdtt=0=\displaystyle \frac{{{\left.{d}{x}\right.}}}{{{\left.{d}{t}\right.}}}{\mid}_{{{t}={0}}}=

dydtt=0=\displaystyle \frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{t}\right.}}}{\mid}_{{{t}={0}}}=

dydxt=0\displaystyle \frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}{\mid}_{{{t}={0}}} = tangent slope =  

speed(0) =\displaystyle \text{speed(0) =}