Let x(t)=t34t2+t\displaystyle {x}{\left({t}\right)}={t}^{{3}}-{4}{t}^{{2}}+{t}

and y(t)=t23t+3\displaystyle {y}{\left({t}\right)}={t}^{{2}}-{3}{t}+{3}

At t=3\displaystyle {t}={3},

x(3)=\displaystyle {x}{\left({3}\right)}=
y(3)=\displaystyle {y}{\left({3}\right)}=

dxdtt=3=\displaystyle \frac{{{\left.{d}{x}\right.}}}{{{\left.{d}{t}\right.}}}{\mid}_{{{t}={3}}}=

dydtt=3=\displaystyle \frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{t}\right.}}}{\mid}_{{{t}={3}}}=

dydxt=3\displaystyle \frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}{\mid}_{{{t}={3}}} = tangent slope =  

speed(3) =\displaystyle \text{speed(3) =}