Let x(t)=t34t2+1\displaystyle {x}{\left({t}\right)}={t}^{{3}}-{4}{t}^{{2}}+{1}

and y(t)=t35t2+2t+8\displaystyle {y}{\left({t}\right)}={t}^{{3}}-{5}{t}^{{2}}+{2}{t}+{8}

At t=2\displaystyle {t}={2},

x(2)=\displaystyle {x}{\left({2}\right)}=
y(2)=\displaystyle {y}{\left({2}\right)}=

dxdtt=2=\displaystyle \frac{{{\left.{d}{x}\right.}}}{{{\left.{d}{t}\right.}}}{\mid}_{{{t}={2}}}=

dydtt=2=\displaystyle \frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{t}\right.}}}{\mid}_{{{t}={2}}}=

dydxt=2\displaystyle \frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}{\mid}_{{{t}={2}}} = tangent slope =

speed(2) =\displaystyle \text{speed(2) =}