Let x(t)=t34t2+3t\displaystyle {x}{\left({t}\right)}={t}^{{3}}-{4}{t}^{{2}}+{3}{t}

and y(t)=t2+1\displaystyle {y}{\left({t}\right)}={t}^{{2}}+{1}

At t=1\displaystyle {t}={1},

x(1)=\displaystyle {x}{\left({1}\right)}=
y(1)=\displaystyle {y}{\left({1}\right)}=

dxdtt=1=\displaystyle \frac{{{\left.{d}{x}\right.}}}{{{\left.{d}{t}\right.}}}{\mid}_{{{t}={1}}}=

dydtt=1=\displaystyle \frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{t}\right.}}}{\mid}_{{{t}={1}}}=

dydxt=1\displaystyle \frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}{\mid}_{{{t}={1}}} = tangent slope =

speed(1) =\displaystyle \text{speed(1) =}