Let
f
(
x
)
=
{
4
x
+
24
if
x
<
−
4
x
+
68
if
x
>
−
4
2
if
x
=
−
4
\displaystyle {f{{\left({x}\right)}}}={\left\lbrace\begin{array}{ccc} {4}{x}+{24}&\text{if}&{x}<-{4}\\\sqrt{{{x}+{68}}}&\text{if}&{x}>-{4}\\{2}&\text{if}&{x}=-{4}\end{array}\right.}
f
(
x
)
=
⎩
⎨
⎧
4
x
+
24
x
+
68
2
if
if
if
x
<
−
4
x
>
−
4
x
=
−
4
Select all statements below that you agree with.
Note: You may be checking more than one box. No partial credit.
f
(
−
4
)
\displaystyle {f{{\left(-{4}\right)}}}
f
(
−
4
)
is defined.
lim
x
→
−
4
f
(
x
)
\displaystyle \lim_{{{x}\to-{4}}}\ \ {f{{\left({x}\right)}}}
x
→
−
4
lim
f
(
x
)
exists.
lim
x
→
−
4
f
(
x
)
=
f
(
−
4
)
\displaystyle \lim_{{{x}\to-{4}}}\ \ {f{{\left({x}\right)}}}={f{{\left(-{4}\right)}}}
x
→
−
4
lim
f
(
x
)
=
f
(
−
4
)
.
The function is continuous at x = -4.
The function is not continuous at x = -4.
Question Help:
Video
Video
Submit
Try a similar question
License
[more..]