Consider the function f(x)=x2e9x\displaystyle {f{{\left({x}\right)}}}={x}^{{{2}}}{e}^{{{9}{x}}}.
For this function there are three important open intervals: (,A)\displaystyle {\left(-\infty,{A}\right)}, (A,B)\displaystyle {\left({A},{B}\right)}, and (B,)\displaystyle {\left({B},\infty\right)} where A\displaystyle {A} and B\displaystyle {B} are the critical numbers.
Find A\displaystyle {A}  
and B\displaystyle {B}  

For each of the following intervals, tell whether f(x)\displaystyle {f{{\left({x}\right)}}} is increasing or decreasing.
(,A)\displaystyle {\left(-\infty,{A}\right)}:
(A,B)\displaystyle {\left({A},{B}\right)}:
(B,)\displaystyle {\left({B},\infty\right)}