The graph of the function f(x)=tanx\displaystyle {f{{\left({x}\right)}}}={\tan{{x}}} is given above for the interval x[0,2π]\displaystyle {x}\in{\left[{0},{2}\pi\right]} ONLY.

Determine the one-sided limit. Then indicate the equation of the vertical asymptote.

Find limx(π2)+ f(x)=\displaystyle \lim_{{{x}\to{\left(\frac{\pi}{{2}}\right)}^{+}}}\ {f{{\left({x}\right)}}}=

This indicates the equation of a vertical asymptote is x=\displaystyle {x}=   .

Find limx(3π2)+ f(x)=\displaystyle \lim_{{{x}\to{\left(\frac{{{3}\pi}}{{2}}\right)}^{+}}}\ {f{{\left({x}\right)}}}=

This indicates the equation of a vertical asymptote is x=\displaystyle {x}=   .