12345-1-2-3-4-5π/2π3π/2x

The graph of the function f(x)=cotx\displaystyle {f{{\left({x}\right)}}}={\cot{{x}}} is given above for the interval x[0,2π]\displaystyle {x}\in{\left[{0},{2}\pi\right]} ONLY.

Determine the one-sided limit. Then indicate the equation of the vertical asymptote.

Find limxπ f(x)=\displaystyle \lim_{{{x}\to\pi^{{-}}}}\ {f{{\left({x}\right)}}}=

This indicates the equation of a vertical asymptote is x=\displaystyle {x}=   .

Find limx0+ f(x)=\displaystyle \lim_{{{x}\to{0}^{+}}}\ {f{{\left({x}\right)}}}=

This indicates the equation of a vertical asymptote is x=\displaystyle {x}=   .