OCB\displaystyle {O}{C}{B} is a semicircle with centre D\displaystyle {D} and radius a\displaystyle {a} , OB^C=θ\displaystyle {O}\hat{{{B}}}{C}=\theta  and OC^B=90\displaystyle {O}\hat{{{C}}}{B}={90}^{\circ} 

OBCDaaθ

Question 1

Show that BC=2acos(θ)\displaystyle {B}{C}={2}{a}{\cos{{\left(\theta\right)}}}

In ΔOCB\displaystyle \Delta{O}{C}{B}

   

BC=\displaystyle {B}{C}=  

(2)


Question 2

If the area of ΔOCB=2asin(2θ)\displaystyle \Delta{O}{C}{B}={2}{a}{\sin{{\left({2}\theta\right)}}} , determine the coordinates of C\displaystyle {C} such that the area of ΔOCB\displaystyle \Delta{O}{C}{B} is a maximum.

Area of ΔOCB\displaystyle \Delta{O}{C}{B} will have a maximum when θ\displaystyle \theta is \displaystyle ^\circ

Therefor the coordinates for C\displaystyle {C} will be (\displaystyle {(} ,\displaystyle , )\displaystyle {)}

 (3)


 [5]