Function Operations
Given the function
f
(
x
)
=
3
x
−
5
\displaystyle {f{{\left({x}\right)}}}={3}{x}-{5}
f
(
x
)
=
3
x
−
5
and the function
g
(
x
)
=
9
x
2
+
7
x
+
1
\displaystyle {g{{\left({x}\right)}}}={9}{x}^{{2}}+{7}{x}+{1}
g
(
x
)
=
9
x
2
+
7
x
+
1
determine each of the following.
Give your answer as a whole number or a simplified fraction.
Evaluate
f
(
9
)
+
g
(
10
)
\displaystyle {f{{\left({9}\right)}}}+{g{{\left({10}\right)}}}
f
(
9
)
+
g
(
10
)
f
(
9
)
+
g
(
10
)
=
\displaystyle {f{{\left({9}\right)}}}+{g{{\left({10}\right)}}}=
f
(
9
)
+
g
(
10
)
=
Preview
Question 6 Part 1 of 4
Evaluate
g
(
5
)
−
f
(
2
)
\displaystyle {g{{\left({5}\right)}}}-{f{{\left({2}\right)}}}
g
(
5
)
−
f
(
2
)
g
(
5
)
−
f
(
2
)
=
\displaystyle {g{{\left({5}\right)}}}-{f{{\left({2}\right)}}}=
g
(
5
)
−
f
(
2
)
=
Preview
Question 6 Part 2 of 4
Evaluate
f
(
3
)
⋅
g
(
11
)
\displaystyle {f{{\left({3}\right)}}}\cdot{g{{\left({11}\right)}}}
f
(
3
)
⋅
g
(
11
)
f
(
3
)
⋅
g
(
11
)
=
\displaystyle {f{{\left({3}\right)}}}\cdot{g{{\left({11}\right)}}}=
f
(
3
)
⋅
g
(
11
)
=
Preview
Question 6 Part 3 of 4
Evaluate
g
(
6
)
f
(
2
)
\displaystyle \frac{{g{{\left({6}\right)}}}}{{f{{\left({2}\right)}}}}
f
(
2
)
g
(
6
)
g
(
6
)
f
(
2
)
=
\displaystyle \frac{{g{{\left({6}\right)}}}}{{f{{\left({2}\right)}}}}=
f
(
2
)
g
(
6
)
=
Preview
Question 6 Part 4 of 4
Question Help:
Video
Submit
Try a similar question
License
[more..]
\displaystyle