Exponential Function Evaluation
Given the function
f
(
x
)
=
40
(
16
)
x
\displaystyle {f{{\left({x}\right)}}}={40}{\left({16}\right)}^{{x}}
f
(
x
)
=
40
(
16
)
x
evaluate each of the following.
Note: Write your answers as Integers or as Reduced Fractions.
A)
Evaluate
f
(
−
3
2
)
\displaystyle {f{{\left(-\frac{{3}}{{2}}\right)}}}
f
(
−
2
3
)
f
(
−
3
2
)
=
\displaystyle {f{{\left(-\frac{{3}}{{2}}\right)}}}=
f
(
−
2
3
)
=
Preview
Question 6 Part 1 of 5
B)
Evaluate
f
(
−
1
2
)
\displaystyle {f{{\left(-\frac{{1}}{{2}}\right)}}}
f
(
−
2
1
)
f
(
−
1
2
)
=
\displaystyle {f{{\left(-\frac{{1}}{{2}}\right)}}}=
f
(
−
2
1
)
=
Preview
Question 6 Part 2 of 5
C)
Evaluate
f
(
0
)
\displaystyle {f{{\left({0}\right)}}}
f
(
0
)
f
(
0
)
=
\displaystyle {f{{\left({0}\right)}}}=
f
(
0
)
=
Preview
Question 6 Part 3 of 5
D)
Evaluate
f
(
1
2
)
\displaystyle {f{{\left(\frac{{1}}{{2}}\right)}}}
f
(
2
1
)
f
(
1
2
)
=
\displaystyle {f{{\left(\frac{{1}}{{2}}\right)}}}=
f
(
2
1
)
=
Preview
Question 6 Part 4 of 5
E)
Evaluate
f
(
3
2
)
\displaystyle {f{{\left(\frac{{3}}{{2}}\right)}}}
f
(
2
3
)
f
(
3
2
)
=
\displaystyle {f{{\left(\frac{{3}}{{2}}\right)}}}=
f
(
2
3
)
=
Preview
Question 6 Part 5 of 5
Question Help:
Video
Submit
Try a similar question
License
[more..]
\displaystyle