f ( x ) = log 2 ( x ) \displaystyle {f{{\left({x}\right)}}}={{\log}_{{2}}{\left({x}\right)}} f ( x ) = log 2 ( x ) f ( 8 ) = log 2 ( 8 ) = log ( 8 ) log ( 2 ) \displaystyle {f{{\left({8}\right)}}}={{\log}_{{2}}{\left({8}\right)}}=\frac{{\log{{\left({8}\right)}}}}{{\log{{\left({2}\right)}}}} f ( 8 ) = log 2 ( 8 ) = log ( 2 ) log ( 8 ) f ( 8 ) = 3 \displaystyle {f{{\left({8}\right)}}}={3} f ( 8 ) = 3
f ( x ) = log 6 ( x ) \displaystyle {f{{\left({x}\right)}}}={{\log}_{{6}}{\left({x}\right)}} f ( x ) = log 6 ( x ) f ( 101 ) = \displaystyle {f{{\left({101}\right)}}}= f ( 101 ) = Preview Question 6 Part 1 of 15 = Preview Question 6 Part 2 of 15
f ( 101 ) = \displaystyle {f{{\left({101}\right)}}}= f ( 101 ) =
g ( x ) = log 4 ( x ) \displaystyle {g{{\left({x}\right)}}}={{\log}_{{4}}{\left({x}\right)}} g ( x ) = log 4 ( x ) g ( 68 ) = \displaystyle {g{{\left({68}\right)}}}= g ( 68 ) = Preview Question 6 Part 4 of 15 = Preview Question 6 Part 5 of 15
g ( 68 ) = \displaystyle {g{{\left({68}\right)}}}= g ( 68 ) =
h ( x ) = log 3 ( x ) \displaystyle {h}{\left({x}\right)}={{\log}_{{3}}{\left({x}\right)}} h ( x ) = log 3 ( x ) h ( 122 ) = \displaystyle {h}{\left({122}\right)}= h ( 122 ) = Preview Question 6 Part 7 of 15 = Preview Question 6 Part 8 of 15
f ( 122 ) = \displaystyle {f{{\left({122}\right)}}}= f ( 122 ) =
p ( t ) = log 8 ( t ) \displaystyle {p}{\left({t}\right)}={{\log}_{{8}}{\left({t}\right)}} p ( t ) = log 8 ( t ) p ( 124 ) = \displaystyle {p}{\left({124}\right)}= p ( 124 ) = Preview Question 6 Part 10 of 15 = Preview Question 6 Part 11 of 15
f ( 124 ) = \displaystyle {f{{\left({124}\right)}}}= f ( 124 ) =
f ( x ) = log 5 ( x ) \displaystyle {f{{\left({x}\right)}}}={{\log}_{{5}}{\left({x}\right)}} f ( x ) = log 5 ( x ) f ( 46 ) = \displaystyle {f{{\left({46}\right)}}}= f ( 46 ) = Preview Question 6 Part 13 of 15 = Preview Question 6 Part 14 of 15
f ( 46 ) = \displaystyle {f{{\left({46}\right)}}}= f ( 46 ) =