f ( x ) = log 2 ( x ) \displaystyle {f{{\left({x}\right)}}}={{\log}_{{2}}{\left({x}\right)}} f ( x ) = log 2 ( x ) f ( 8 ) = log 2 ( 8 ) = log ( 8 ) log ( 2 ) \displaystyle {f{{\left({8}\right)}}}={{\log}_{{2}}{\left({8}\right)}}=\frac{{\log{{\left({8}\right)}}}}{{\log{{\left({2}\right)}}}} f ( 8 ) = log 2 ( 8 ) = log ( 2 ) log ( 8 ) f ( 8 ) = 3 \displaystyle {f{{\left({8}\right)}}}={3} f ( 8 ) = 3
h ( x ) = log 3 ( x ) \displaystyle {h}{\left({x}\right)}={{\log}_{{{3}}}{\left({x}\right)}} h ( x ) = log 3 ( x ) h ( 7 9 ) = \displaystyle {h}{\left(\frac{{7}}{{9}}\right)}= h ( 9 7 ) = Preview Question 6 Part 1 of 9 = Preview Question 6 Part 2 of 9
h ( 7 9 ) = \displaystyle {h}{\left(\frac{{7}}{{9}}\right)}= h ( 9 7 ) =
p ( t ) = 13 log 6 ( t ) \displaystyle {p}{\left({t}\right)}={13}{{\log}_{{6}}{\left({t}\right)}} p ( t ) = 13 log 6 ( t ) p ( 187 ) = \displaystyle {p}{\left({187}\right)}= p ( 187 ) = Preview Question 6 Part 4 of 9 = Preview Question 6 Part 5 of 9
p ( 187 ) = \displaystyle {p}{\left({187}\right)}= p ( 187 ) =
f ( x ) = 20 + log 4 ( x ) \displaystyle {f{{\left({x}\right)}}}={20}+{{\log}_{{4}}{\left({x}\right)}} f ( x ) = 20 + log 4 ( x ) f ( 169 ) = \displaystyle {f{{\left({169}\right)}}}= f ( 169 ) = Preview Question 6 Part 7 of 9 = Preview Question 6 Part 8 of 9
f ( 169 ) = \displaystyle {f{{\left({169}\right)}}}= f ( 169 ) =