The region between the lines
x
=
a
\displaystyle {x}={a}
x
=
a
,
x
=
b
\displaystyle {x}={b}
x
=
b
, the graph of
y
=
f
(
x
)
\displaystyle {y}={f{{\left({x}\right)}}}
y
=
f
(
x
)
and the
x
-axis is rotated around the
x
-axis to form a solid.
Which of the following integrals represents the volume of this solid?
∫
a
b
2
π
x
⋅
f
(
x
)
d
x
\displaystyle {\int_{{a}}^{{b}}}{2}\pi{x}\cdot{f{{\left({x}\right)}}}\ {\left.{d}{x}\right.}
∫
a
b
2
π
x
⋅
f
(
x
)
d
x
∫
a
b
(
f
(
x
)
)
2
d
x
\displaystyle {\int_{{a}}^{{b}}}{\left({f{{\left({x}\right)}}}\right)}^{{2}}\ {\left.{d}{x}\right.}
∫
a
b
(
f
(
x
)
)
2
d
x
∫
a
b
π
(
f
(
x
)
)
d
x
\displaystyle {\int_{{a}}^{{b}}}\pi{\left({f{{\left({x}\right)}}}\right)}\ {\left.{d}{x}\right.}
∫
a
b
π
(
f
(
x
)
)
d
x
∫
a
b
π
(
f
(
x
)
)
2
d
x
\displaystyle {\int_{{a}}^{{b}}}\pi{\left({f{{\left({x}\right)}}}\right)}^{{2}}\ {\left.{d}{x}\right.}
∫
a
b
π
(
f
(
x
)
)
2
d
x
Submit
Try a similar question
License
[more..]